Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.164
Filtrar
1.
PLoS One ; 19(4): e0299954, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635514

RESUMO

For migratory birds, events happening during any period of their annual cycle can have strong carry-over effects on the subsequent periods. The strength of carry-over effects between non-breeding and breeding grounds can be shaped by the degree of migratory connectivity: whether or not individuals that breed together also migrate and/or spend the non-breeding season together. We assessed the annual cycle of the White-crested Elaenia (Elaenia albiceps chilensis), the longest-distance migrant flycatcher within South America, which breeds in Patagonia and spends the non-breeding season as far north as Amazonia. Using light-level geolocators, we tracked the annual movements of elaenias breeding on southern Patagonia and compared it with movements of elaenias breeding in northern Patagonia (1,365 km north) using Movebank Repository data. We found that elaenias breeding in southern Patagonia successively used two separate non-breeding regions while in their Brazilian non-breeding grounds, as already found for elaenias breeding in the northern Patagonia site. Elaenias breeding in both northern and southern Patagonia also showed high spread in their non-breeding grounds, high non-breeding overlap among individuals from both breeding sites, and similar migration phenology, all of which suggests weak migratory connectivity for this species. Elucidating the annual cycle of this species, with particular emphasis on females and juveniles, still requires further research across a wide expanse of South America. This information will be critical to understanding and possibly predicting this species' response to climate change and rapid land-use changes.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Feminino , Migração Animal/fisiologia , Brasil , Cruzamento , Estações do Ano
2.
J Comp Neurol ; 532(4): e25617, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38629472

RESUMO

The New World suboscines (Passeriformes and Tyrannides) are one of the biggest endemic vertebrate radiations in South America, including the families Furnariidae and Tyrannidae. Avian brain morphology is a reliable proxy to study their evolution. The aim of this work is to elucidate whether the brains of these families reflect the ecological differences (e.g., feeding behavior) and to clarify macroevolutionary aspects of their neuroanatomy. Our hypotheses are as follows: Brain size is similar between both families and with other Passeriformes; brain morphology in Tyrannides is the result of the pressure of ecological factors; and brain disparity is low since they share ecological traits. Skulls of Furnariidae and Tyrannidae were micro-computed tomography-scanned, and three-dimensional models of the endocast were generated. Regression analyses were performed between brain volume and body mass. Linear and surface measurements were used to build phylomorphospaces and to calculate the amount of phylogenetic signal. Tyrannidae showed a larger brain disparity than Furnariidae, although it is not shaped by phylogeny in the Tyrannides. Furnariidae present enlarged Wulsts (eminentiae sagittales) but smaller optic lobes, while in Tyrannidae, it is the opposite. This could indicate that in Tyrannides there is a trade-off between the size of these two visual-related brain structures.


Assuntos
Passeriformes , Animais , Humanos , Passeriformes/anatomia & histologia , Filogenia , Microtomografia por Raio-X , Encéfalo/anatomia & histologia
3.
Anim Cogn ; 27(1): 35, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656554

RESUMO

Cognition is a powerful adaptation, enabling animals to utilise resources that are unavailable without manipulation. Tool use and food processing are examples of using cognition to overcome the protective mechanisms of food resources. Here, we describe and examine the flexibility of proto-tool use (defined as the alteration of an object through object-substrate manipulation) for food processing in a cooperatively breeding bird, the Arabian babbler (Argya squamiceps). Field observations demonstrate that the birds transport different caterpillar species to different substrate types depending on the processing method needed to prepare the caterpillar for eating. Species with toxic setae (e.g. Casama innotata) are transported to be rubbed on rough substrates (e.g. sand) before consumption, while other species (e.g. Hyles livornica) are transported to be pounded against hard substrates until their inner organs are removed and only their external body part is consumed. These results are among the few to describe flexible proto-tool use for food processing in wild animals. They thereby contribute to the taxonomic mapping of proto-tool use and food processing in non-human species, which is a fundamental step to advance comparative studies on the evolution of these behaviours and their underlying cognitive mechanisms.


Assuntos
Comportamento Alimentar , Passeriformes , Animais , Passeriformes/fisiologia , Comportamento de Utilização de Ferramentas , Cognição , Comportamento Predatório , Feminino , Masculino
4.
PeerJ ; 12: e16361, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563018

RESUMO

Parasite transmission is a heterogenous process in host-parasite interactions. This heterogeneity is particularly apparent in vector-borne parasite transmission where the vector adds an additional level of complexity. Haemosporidian parasites, a widespread protist, cause a malaria-like disease in birds globally, but we still have much to learn about the consequences of infection to hosts' health. In the Caribbean, where malarial parasites are endemic, studying host-parasites interactions may give us important insights about energetic trade-offs involved in malarial parasites infections in birds. In this study, we tested the consequences of Haemoproteus infection on the Bananaquit, a resident species of Puerto Rico. We also tested for potential sources of individual heterogeneity in the consequences of infection such as host age and sex. To quantify the consequences of infection to hosts' health we compared three complementary body condition indices between infected and uninfected individuals. Our results showed that Bananaquits infected by Haemoproteus had higher body condition than uninfected individuals. This result was consistent among the three body condition indices. Still, we found no clear evidence that this effect was mediated by host age or sex. We discuss a set of non-mutually exclusive hypotheses that may explain this pattern including metabolic syndrome, immunological responses leading to host tolerance or resistance to infection, and potential changes in consumption rates. Overall, our results suggest that other mechanisms, may drive the consequences of avian malarial infection.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Plasmodium , Humanos , Animais , Doenças das Aves/epidemiologia , Passeriformes/parasitologia , Porto Rico
5.
Elife ; 122024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38562050

RESUMO

In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles-a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male-versus female-grackles finish 'relearning' faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles' choice behaviour is governed more strongly by the 'weight' of relative differences in recent foraging payoffs-i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning-where we simulate 'birds' based on empirical estimates of our grackles' reinforcement learning-replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.


Assuntos
Aprendizagem , Passeriformes , Animais , Humanos , Feminino , Masculino , Teorema de Bayes , Cognição , Reforço Psicológico
6.
Magy Seb ; 77(1): 6-7, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564296
7.
PLoS One ; 19(4): e0300583, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656932

RESUMO

Accurately determining the diet of wild animals can be challenging if food items are small, visible only briefly, or rendered visually unidentifiable in the digestive system. In some food caching species, an additional challenge is determining whether consumed diet items have been previously stored or are fresh. The Canada jay (Perisoreus canadensis) is a generalist resident of North American boreal and subalpine forests with anatomical and behavioural adaptations allowing it to make thousands of arboreal food caches in summer and fall that are presumably responsible for its high winter survival and late winter/early spring breeding. We used DNA fecal metabarcoding to obtain novel information on nestling diets and compiled a dataset of 662 published and unpublished direct observations or stomach contents identifications of natural foods consumed by Canada jays throughout the year. We then used detailed natural history information to make informed decisions on whether each item identified to species in the diets of winter adults and nestlings was best characterized as 'likely cached', 'likely fresh' (i.e., was available as a non-cached item when it appeared in a jay's feces or stomach), or 'either possible'. Of the 87 food items consumed by adults in the winter, 39% were classified as 'likely cached' and 6% were deemed to be 'likely fresh'. For nestlings, 29% of 125 food items identified to species were 'likely cached' and 38% were 'likely fresh'. Our results support both the indispensability of cached food for Canada jay winter survival and previous suggestions that cached food is important for late winter/early spring breeding. Our work highlights the value of combining metabarcoding, stomach contents analysis, and direct observations to determine the cached vs. non-cached origins of consumed food items and the identity of food caches, some of which could be especially vulnerable to degradation through climate change.


Assuntos
Dieta , Fezes , Estações do Ano , Animais , Fezes/química , Código de Barras de DNA Taxonômico/métodos , Passeriformes/fisiologia , Comportamento Alimentar , Cruzamento , Canadá , DNA/análise , DNA/genética
8.
Parasitol Res ; 123(4): 182, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38622257

RESUMO

Avian haemosporidians are vector-borne parasites, infecting a great variety of birds. The order Passeriformes has the highest average infection probability; nevertheless, some common species of Passeriformes have been rather poorly studied. We investigated haemosporidians in one such species, the Eurasian jay Garrulus glandarius (Corvidae), from a forest population in Hesse, Central Germany. All individuals were infected with at least one haemosporidian genus (overall prevalence: 100%). The most common infection pattern was a mixed Haemoproteus and Leucocytozoon infection, whereas no Plasmodium infection was detected. Results on lineage diversity indicate a rather pronounced host-specificity of Haemoproteus and Leucocytozoon lineages infecting birds of the family Corvidae.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Passeriformes , Infecções Protozoárias em Animais , Aves Canoras , Humanos , Animais , Prevalência , DNA de Protozoário , Filogenia , Haemosporida/genética , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia , Infecções Protozoárias em Animais/parasitologia
9.
Sci Total Environ ; 927: 172373, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38604356

RESUMO

Wastewater treatment wetlands are cost-effective strategies for remediating trace metals in industrial effluent. However, biogeochemical exchange between wastewater treatment wetlands and adjacent environments provides opportunities for trace metals to cycle in surrounding ecosystems. The transfer of trace metals to wildlife inhabiting treatment wetlands must be considered when evaluating wetland success. Using passerine birds as bioindicators, we conducted a multi-tissue analysis to investigate the mobilization of zinc, copper, and lead derived from wastewater to terrestrial wildlife in treatment wetlands and surrounding habitat. In addition, we evaluate the strength of relationships between metal concentrations in non-lethal (blood and feathers) and lethal (muscle and liver) sample types for estimation of toxicity risk. From July 2020 to August 2021, 177 passerines of seven species were captured at two wetlands constructed to treat industrial wastewater and two reference wetlands in the coastal plain of South Carolina. Feather, blood, liver, and muscle samples from each bird were analyzed for fourteen metals using inductively coupled plasma mass spectrometry and direct mercury analysis. Passerines inhabiting wastewater treatment wetlands accumulated higher concentrations of zinc in liver, copper in blood, and lead in feathers than passerines in reference wetlands, but neither blood nor feather concentrations were correlated with internal tissue concentrations. Of all the detected metals, only mercury in the blood showed a strong predictive relationship with mercury in internal tissues. This study indicates that trace metals derived from wastewater are bioavailable and exported to terrestrial wildlife and that passerine biomonitoring is a valuable tool for assessing metal transfer from treatment wetlands. Regular blood sampling can reveal proximate trace metal exposure but cannot predict internal body burdens for most metals.


Assuntos
Monitoramento Ambiental , Águas Residuárias , Poluentes Químicos da Água , Áreas Alagadas , Animais , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Águas Residuárias/química , Eliminação de Resíduos Líquidos/métodos , Metais/análise , Passeriformes/metabolismo
10.
Nat Commun ; 15(1): 3151, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605055

RESUMO

Endogenous retroviruses (ERVs) are ancient retroviral remnants integrated in host genomes, and commonly deleted through unequal homologous recombination, leaving solitary long terminal repeats (solo-LTRs). This study, analysing the genomes of 362 bird species and their reptilian and mammalian outgroups, reveals an unusually higher level of solo-LTRs formation in birds, indicating evolutionary forces might have purged ERVs during evolution. Strikingly in the order Passeriformes, and especially the parvorder Passerida, endogenous retrovirus K (ERVK) solo-LTRs showed bursts of formation and recurrent accumulations coinciding with speciation events over past 22 million years. Moreover, our results indicate that the ongoing expansion of ERVK solo-LTRs in these bird species, marked by high transcriptional activity of ERVK retroviral genes in reproductive organs, caused variation of solo-LTRs between individual zebra finches. We experimentally demonstrated that cis-regulatory activity of recently evolved ERVK solo-LTRs may significantly increase the expression level of ITGA2 in the brain of zebra finches compared to chickens. These findings suggest that ERVK solo-LTRs expansion may introduce novel genomic sequences acting as cis-regulatory elements and contribute to adaptive evolution. Overall, our results underscore that the residual sequences of ancient retroviruses could influence the adaptive diversification of species by regulating host gene expression.


Assuntos
Retrovirus Endógenos , Passeriformes , Animais , Retrovirus Endógenos/genética , Passeriformes/genética , Galinhas/genética , Sequências Repetidas Terminais/genética , Recombinação Homóloga , Mamíferos/genética
11.
Proc Biol Sci ; 291(2021): 20240238, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628125

RESUMO

Vertebrates host complex microbiomes that impact their physiology. In many taxa, including colourful wood-warblers, gut microbiome similarity decreases with evolutionary distance. This may suggest that as host populations diverge, so do their microbiomes, because of either tight coevolutionary dynamics, or differential environmental influences, or both. Hybridization is common in wood-warblers, but the effects of evolutionary divergence on the microbiome during secondary contact are unclear. Here, we analyse gut microbiomes in two geographically disjunct hybrid zones between blue-winged warblers (Vermivora cyanoptera) and golden-winged warblers (Vermivora chrysoptera). We performed 16S faecal metabarcoding to identify species-specific bacteria and test the hypothesis that host admixture is associated with gut microbiome disruption. Species identity explained a small amount of variation between microbiomes in only one hybrid zone. Co-occurrence of species-specific bacteria was rare for admixed individuals, yet microbiome richness was similar among admixed and parental individuals. Unexpectedly, we found several bacteria that were more abundant among admixed individuals with a broader deposition of carotenoid-based plumage pigments. These bacteria are predicted to encode carotenoid biosynthesis genes, suggesting birds may take advantage of pigments produced by their gut microbiomes. Thus, host admixture may facilitate beneficial symbiotic interactions which contribute to plumage ornaments that function in sexual selection.


Assuntos
Microbioma Gastrointestinal , Passeriformes , Humanos , Animais , Fenótipo , Vertebrados , Carotenoides
12.
Proc Biol Sci ; 291(2021): 20232427, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628131

RESUMO

Cooperation may emerge from intrinsic factors such as social structure and extrinsic factors such as environmental conditions. Although these factors might reinforce or counteract each other, their interaction remains unexplored in animal populations. Studies on multilevel societies suggest a link between social structure, environmental conditions and individual investment in cooperative behaviours. These societies exhibit flexible social configurations, with stable groups that overlap and associate hierarchically. Structure can be seasonal, with upper-level units appearing only during specific seasons, and lower-level units persisting year-round. This offers an opportunity to investigate how cooperation relates to social structure and environmental conditions. Here, we study the seasonal multilevel society of superb fairy-wrens (Malurus cyaneus), observing individual responses to experimental playback of conspecific distress calls. Individuals engaged more in helping behaviour and less in aggressive/territorial song during the harsher non-breeding season compared to the breeding season. The increase in cooperation was greater for breeding group members than for members of the same community, the upper social unit, comprised of distinct breeding groups in association. Results suggest that the interaction between social structure and environmental conditions drives the seasonal switch in cooperation, supporting the hypothesis that multilevel societies can emerge to increase cooperation during harsh environmental conditions.


Assuntos
Passeriformes , Aves Canoras , Humanos , Animais , Aves Canoras/fisiologia , Comportamento Cooperativo , Territorialidade , Comportamento de Ajuda
13.
Proc Biol Sci ; 291(2021): 20240235, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38654650

RESUMO

Terror birds (Aves, Phorusrhacidae) were large flightless apex predators in South America during the Cenozoic. Here, we estimate a new phylogeny for phorusrhacids using Bayesian inference. We demonstrate phylogenetic evidence for a monophyletic Patagornithinae and find significant support for a distinct crown group associated with the quintessential 'terror bird' characteristics. We use this phylogeny to analyse the evolution of body size and cursoriality. Our results reveal that size overlap was rare between co-occurring subfamilies, supporting the hypothesis that these traits were important for niche partitioning. We observe that gigantism evolved in a single clade, containing Phorusrhacinae and Physornithinae. The members of this lineage were consistently larger than all other phorusrhacids. Phorusrhacinae emerged following the extinction of Physornithinae, suggesting the ecological succession of the apex predator niche. The first known phorusrhacine, Phorusrhacos longissimus, was gigantic but significantly smaller and more cursorial than any physornithine. These traits likely evolved in response to the expansion of open environments. Following the Santacrucian SALMA, phorusrhacines increased in size, further converging on the morphology of Physornithinae. These findings suggest that the evolution and displacement of body size drove terror bird niche partitioning and competitive exclusion controlled phorusrhacid diversity.


Assuntos
Evolução Biológica , Tamanho Corporal , Filogenia , Animais , Passeriformes/fisiologia , Teorema de Bayes , América do Sul , Aves/fisiologia
14.
Mol Ecol ; 33(9): e17358, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38625740

RESUMO

How do chemically defended animals resist their own toxins? This intriguing question on the concept of autotoxicity is at the heart of how species interactions evolve. In this issue of Molecular Ecology (Molecular Ecology, 2024, 33), Bodawatta and colleagues report on how Papua New Guinean birds coopted deadly neurotoxins to create lethal mantles that protect against predators and parasites. Combining chemical screening of the plumage of a diverse collection of passerine birds with genome sequencing, the researchers unlocked a deeper understanding of how some birds sequester deadly batrachotoxin (BTX) from their food without poisoning themselves. They identified that birds impervious to BTX bear amino acid substitutions in the toxin-binding site of the voltage-gated sodium channel Nav1.4, whose function is essential for proper contraction and relaxation of vertebrate muscles. Comparative genetic and molecular docking analyses show that several of the substitutions associated with insensitivity to BTX may have become prevalent among toxic birds through positive selection. Intriguingly, poison dart frogs that also co-opted BTX in their lethal mantles were found to harbour similar toxin insensitivity substitutions in their Nav1.4 channels. Taken together, this sets up a powerful model system for studying the mechanisms behind convergent molecular evolution and how it may drive biological diversity.


Assuntos
Animais Venenosos , Batraquiotoxinas , Aves Canoras , Animais , Batraquiotoxinas/genética , Neurotoxinas/toxicidade , Neurotoxinas/genética , Passeriformes/genética , Anuros/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Substituição de Aminoácidos , 60633
15.
Anim Cogn ; 27(1): 19, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38429547

RESUMO

Prey species commonly assess predation risk based on acoustic signals, such as predator vocalizations or heterospecific alarm calls. The resulting risk-sensitive decision-making affects not only the behavior and life-history of individual prey, but also has far-reaching ecological consequences for population, community, and ecosystem dynamics. Although auditory risk recognition is ubiquitous in animals, it remains unclear how individuals gain the ability to recognize specific sounds as cues of a threat. Here, it has been shown that free-living birds (Wood Warblers Phylloscopus sibilatrix) can learn to recognize unfamiliar, complex sounds (samples of punk rock songs) as cues of a threat from conspecifics holding adjacent territories during the spring breeding season. In a playback experiment, Wood Warblers initially ignored the unfamiliar sounds, but after repeatedly hearing that these sounds trigger alarm calling reaction of neighbors, most individuals showed an anti-predator response to them. Moreover, once learned soon after nestlings hatching, the anti-predator response of parents toward previously unfamiliar sounds was then retained over the entire nestlings rearing period. These results demonstrate that social learning via the association of unfamiliar sounds with known alarm signals enables the spread of anti-predator behavior across territory borders and provides a mechanism explaining the widespread abilities of animals to assess predation risk based on acoustic cues.


Assuntos
Passeriformes , Aprendizado Social , Humanos , Animais , Ecossistema , Vocalização Animal/fisiologia , Aprendizagem , Passeriformes/fisiologia , Comportamento Predatório
16.
J Zoo Wildl Med ; 55(1): 57-66, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453488

RESUMO

The Rhynonyssid mesostigmatic mite, Sternostoma tracheacolum, is a well-documented endoparasitic hematophagous arthropod of the respiratory tracts of multiple avian species, particularly Estrildid finches and canaries. In this retrospective study, 175 medical and 278 pathology records for the Gouldian finch (Chloebia gouldiae) population (N = 377) at the San Diego Zoo between 2013 and 2021 were analyzed to evaluate the effectiveness of ivermectin-based prophylaxis. A multivariable negative binomial regression model was constructed to evaluate the population effects of monthly treatments on morbidity or mortality associated with respiratory mites. While controlling for other factors in the model, the prophylactic treatment did not significantly reduce the monthly rate of mite-associated morbidity or mortality (IRR = 1.017, 95% CI: 0.997-1.036, P = 0.0759); however, low proportions of the population were prophylactically treated over time. Different factors were significant when separately evaluating adjusted associations with respiratory morbidity and mortality. The findings suggest increased rates of respiratory morbidity for each successive year of the study period (IRR = 1.180, 95% CI: 1.046-1.342, P = 0.0090) and increased rates of mite-associated mortality occurring annually between May and October (IRR = 1.697, 95% CI: 1.034-2.855, P = 0.0404) compared to the wet winter season. Our findings highlight the need to continually evaluate and optimize treatment regimens in zoological collections. Further investigations into this host-parasite relationship and potential treatments and preventive therapies are warranted.


Assuntos
Tentilhões , Passeriformes , Animais , Estudos Retrospectivos , Sistema Respiratório
17.
Anim Cogn ; 27(1): 25, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467946

RESUMO

According to the harsh environment hypothesis, natural selection should favour cognitive mechanisms to overcome environmental challenges. Tests of this hypothesis to date have largely focused on asocial learning and memory, thus failing to account for the spread of information via social means. Tests in specialized food-hoarding birds have shown strong support for the effects of environmental harshness on both asocial and social learning. Whether the hypothesis applies to non-specialist foraging species remains largely unexplored. We evaluated the relative importance of social learning across a known harshness gradient by testing generalist great tits, Parus major, from high (harsh)- and low (mild)-elevation populations in two social learning tasks. We showed that individuals use social learning to find food in both colour-associative and spatial foraging tasks and that individuals differed consistently in their use of social learning. However, we did not detect a difference in the use or speed of implementing socially observed information across the elevational gradient. Our results do not support predictions of the harsh environment hypothesis suggesting that context-dependent costs and benefits as well as plasticity in the use of social information may play an important role in the use of social learning across environments. Finally, this study adds to the accumulating evidence that the harsh environment hypothesis appears to have more pronounced effects on specialists compared to generalist species.


Assuntos
Passeriformes , Aprendizado Social , Humanos , Animais , Aprendizagem
19.
Zootaxa ; 5410(4): 573-585, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38480223

RESUMO

The Scaled Antbird Drymophila squamata is a suboscine passerine endemic to the Atlantic Forest of eastern Brazil. Two subspecies, putatively diagnosed by the presence/absence of white spots on the crown, have traditionally been recognized: the nominate, ranging from Pernambuco to Bahia in northeastern Brazil, and D. squamata stictocorypha, from Minas Gerais to Santa Catarina in southeastern and southern Brazil. Here we combine morphological, acoustic, and genetic data to examine geographic variation in and revise the taxonomy of D. squamata. We show that there are two separately evolving population lineages in D. squamata, one south and the other north of the So Francisco River. The latter is unnamed and is thus described herein. We found that crown variation is not as geographically structured as previously thought, and thus we suggest that D. squamata stictocorypha is not a valid taxon. Finally, we also provide evidence of clinal variation in the species vocalizations and underscore the importance of broad geographic sampling when assessing species limits using vocalizations.


Assuntos
Lagartos , Passeriformes , Animais , Brasil , Filogenia , Florestas
20.
Mol Ecol ; 33(8): e17329, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38533805

RESUMO

Patterns of pathogen prevalence are, at least partially, the result of coevolutionary host-pathogen interactions. Thus, exploring the distribution of host genetic variation in relation to infection by a pathogen within and across populations can provide important insights into mechanisms of host defence and adaptation. Here, we use a landscape genomics approach (Bayenv) in conjunction with genome-wide data (ddRADseq) to test for associations between avian malaria (Plasmodium) prevalence and host genetic variation across 13 populations of the island endemic Berthelot's pipit (Anthus berthelotii). Considerable and consistent spatial heterogeneity in malaria prevalence was observed among populations over a period of 15 years. The prevalence of malaria infection was also strongly positively correlated with pox (Avipoxvirus) prevalence. Multiple host loci showed significant associations with malaria prevalence after controlling for genome-wide neutral genetic structure. These sites were located near to or within genes linked to metabolism, stress response, transcriptional regulation, complement activity and the inflammatory response, many previously implicated in vertebrate responses to malarial infection. Our findings identify diverse genes - not just limited to the immune system - that may be involved in host protection against malaria and suggest that spatially variable pathogen pressure may be an important evolutionary driver of genetic divergence among wild animal populations, such as Berthelot's pipit. Furthermore, our data indicate that spatio-temporal variation in multiple different pathogens (e.g. malaria and pox in this case) may have to be studied together to develop a more holistic understanding of host pathogen-mediated evolution.


Assuntos
Malária Aviária , Passeriformes , Plasmodium , Animais , Malária Aviária/epidemiologia , Malária Aviária/genética , Plasmodium/genética , Deriva Genética , Passeriformes/genética , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...